Protective effects of silymarin against photocarcinogenesis in a mouse skin model.
S.K. Katiyar; N.J. Korman; H. Mukhtar; R. Agarwal
Abstract
BACKGROUND: Nonmelanoma skin cancer is the most common cancer among humans; solar UV is its major cause.
Therefore, it is important to identify agents that can offer protection against this cancer.
PURPOSE: We evaluated the
protective effects of silymarin, a flavonoid compound isolated from the milk thistle plant, against UVB radiation-induced
nonmelanoma skin cancer in mice and delineated the mechanism(s) of its action.
METHODS: For long-term studies,
three different protocols of treatment were employed, each evaluating protection by silymarin at a different stage of
carcinogenesis. Female SKH-1 hairless mice were subjected to 1) UVB-induced tumor initiation followed by phorbol
ester-mediated tumor promotion, 2) 7,12-dimethylbenz[a] anthracene-induced tumor initiation followed by
UVB-mediated tumor promotion, and 3) UVB-induced complete carcinogenesis. Forty mice were used in each protocol
and were divided into control and treatment groups. Silymarin was applied topically at a dose of 9 mg per application
before UVB exposure, and its effects on tumor incidence (% of mice with tumors), tumor multiplicity (number of tumors
per mouse), and average tumor volume per mouse were evaluated. In short-term studies, the following parameters were
measured: formation of sunburn and apoptotic cells, skin edema, epidermal catalase and cyclooxygenase (COX)
activities, and enzymatic activity and messenger RNA (mRNA) expression for ornithine decarboxylase (ODC), a
frequently observed marker at tumor promotion stage. Fisher`s exact test was used to evaluate differences in tumor
incidence, two-sample Wilcoxon rank sum test was used for tumor multiplicity and tumor volume, and Student`s t test
was used for all other measurements. All statistical tests were two-sided.
RESULTS: In the protocol with UVB-induced
tumor initiation, silymarin treatment reduced tumor incidence from 40% to 20% (P = .30), tumor multiplicity by 67% (P
= .10), and tumor volume per mouse by 66% (P = .14). In the protocol with UVB-induced tumor promotion, silymarin
treatment reduced tumor incidence from 100% to 60% (P<.003), tumor multiplicity by 78% (P<.0001), and tumor
volume per mouse by 90% (P<.003). The effect of silymarin was much more profound in the protocol with
UVB-induced complete carcinogenesis, where tumor incidence was reduced from 100% to 25% (P<.0001), tumor
multiplicity by 92% (P<.0001), and tumor volume per mouse by 97% (P<.0001). In short-term experiments, silymarin
application resulted in statistically significant inhibition in UVB-caused sunburn and apoptotic cell formation, skin edema,
depletion of catalase activity, and induction of COX and ODC activities and ODC mRNA expression.
CONCLUSIONS AND IMPLICATION: Silymarin can provide substantial protection against different stages of
UVB-induced carcinogenesis, possibly via its strong antioxidant properties. Clinical testing of its usefulness is warranted.